Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
Journal of Mathematics ; 2022, 2022.
Article in English | ProQuest Central | ID: covidwho-1891970

ABSTRACT

This article investigates a survival analysis under randomly censored mortality distribution. From the perspective of frequentist, we derive the point estimations through the method of maximum likelihood estimation. Furthermore, approximate confidence intervals for the parameters are constructed based on the asymptotic distribution of the maximum likelihood estimators. Besides, two parametric bootstraps are implemented to construct the approximate confidence intervals for the unknown parameters. In Bayesian framework, the Bayes estimates of the unknown parameters are evaluated by applying the Markov chain Monte Carlo technique, and highest posterior density credible intervals are also carried out. In addition, the Bayes inference based on symmetric and asymmetric loss functions is obtained. Finally, Monte Carlo simulation is performed to observe the behavior of the proposed methods, and a real data set of COVID-19 mortality rate is analyzed for illustration.

2.
Comput Intell Neurosci ; 2022: 5134507, 2022.
Article in English | MEDLINE | ID: covidwho-1799192

ABSTRACT

This article investigates the estimation of the parameters for power hazard function distribution and some lifetime indices such as reliability function, hazard rate function, and coefficient of variation based on adaptive Type-II progressive censoring. From the perspective of frequentism, we derive the point estimations through the method of maximum likelihood estimation. Besides, delta method is implemented to construct the variances of the reliability characteristics. Markov chain Monte Carlo techniques are proposed to construct the Bayes estimates. To this end, the results of the Bayes estimates are obtained under squared error and linear exponential loss functions. Also, the corresponding credible intervals are constructed. A simulation study is utilized to assay the performance of the proposed methods. Finally, a real data set of COVID-19 mortality rate is analyzed to validate the introduced inference methods.


Subject(s)
COVID-19 , Bayes Theorem , Computer Simulation , Humans , Likelihood Functions , Monte Carlo Method , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL